Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Bioeng Transl Med ; 8(3): e10508, 2023 May.
Article in English | MEDLINE | ID: covidwho-2282387

ABSTRACT

We have developed a serology test platform for identifying individuals with prior exposure to specific viral infections and provide data to help reduce public health risks. The serology test composed of a pair of cell lines engineered to express either a viral envelop protein (Target Cell) or a receptor to recognize the Fc region of an antibody (Reporter Cell), that is, Diagnostic-Cell-Complex (DxCell-Complex). The formation of an immune synapse, facilitated by the analyte antibody, resulted into a dual-reporter protein expression by the Reporter Cell. We validated it with human serum with confirmed history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. No signal amplification steps were necessary. The DxCell-Complex quantitatively detected the target-specific immunoglobulin G (IgG) within 1 h. Validation with clinical human serum containing SARS-CoV-2 IgG antibodies confirmed 97.04% sensitivity and 93.33% specificity. The platform can be redirected against other antibodies. Self-replication and activation-induced cell signaling, two attributes of the cell, will enable rapid and cost-effective manufacturing and its operation in healthcare facilities without requiring time-consuming signal amplification steps.

2.
Microbiol Spectr ; 10(4): e0073122, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1950014

ABSTRACT

We have engineered a cell that can be used for diagnosing active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Isolation of individuals with active infections offers an effective solution for mitigating pandemics. However, the implementation of this practice requires robust infrastructure for rapid and intuitive testing, which is currently missing in our communities. To address this need, we engineered a fast-growing cell line into a cell-based antigen test platform for emerging viruses, i.e., DxCell, that can be rapidly deployed in decentralized health care facilities for continuous testing. The technology was characterized using cells engineered to present spike glycoprotein of SARS-CoV-2 (SARS-CoV-2-Sgp-cells) and Calu-3 host cells infected with competent SARS-CoV-2. Preclinical validation was conducted by directly incubating the DxCell with oropharyngeal swabs from mice infected with SARS-CoV-2. No sample preparation steps are necessary. The DxCell quantitatively detected the SARS-CoV-2-Sgp-cells within 1 h (P < 0.02). Reporter signal was proportional to the number of SARS-CoV-2-Sgp-cells, which represents the infection burden. The SARS-CoV-2 DxCell antigen test was benchmarked against quantitative PCR (qPCR) test and accurately differentiated between infected (n = 8) and control samples (n = 3) (P < 0.05). To demonstrate the broad applicability of the platform, we successfully redirected its specificity and tested its sensing function with cells engineered to present antigens from other viruses. In conclusion, we have developed an antigen test platform that capitalizes on the two innate functions of the cell, self-replication and activation-induced cell signaling. These provide the DxCell key advantages over existing technologies, e.g., label-free testing without sample processing, and will facilitate its implementation in decentralized health care facilities. IMPORTANCE Pandemic mitigation requires continuous testing of symptomatic or asymptomatic individuals with rapid turnaround time, and lack of this capability in our community has prolonged pandemic duration leading to obliteration of world economies. The DxCell platform is a cell-based self-replicative antigen test that detects molecular signatures of the target pathogen and can be distributed in small quantities to testing facilities for expansion on site to the desired volume. In this work, we directed this platform to target SARS-CoV-2. Unlike the PCR detection of viral mRNA that requires trained personnel, the DxCell does not require any sample preparation or signal amplification step and introduces an opportunity for a decentralized testing network.


Subject(s)
COVID-19 , Animals , COVID-19/diagnosis , COVID-19 Testing , Mice , Pandemics , SARS-CoV-2/genetics , Specimen Handling
3.
Front Microbiol ; 13: 879152, 2022.
Article in English | MEDLINE | ID: covidwho-1822383

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of the COVID-19 pandemic, is initiated by its binding to the ACE2 receptor and other co-receptors on mucosal epithelial cells. Variable outcomes of the infection and disease severity can be influenced by pre-existing risk factors. Human immunodeficiency virus (HIV), the cause of AIDS, targets the gut mucosal immune system and impairs epithelial barriers and mucosal immunity. We sought to determine the impact and mechanisms of pre-existing HIV infection increasing mucosal vulnerability to SARS-CoV-2 infection and disease. We investigated changes in the expression of ACE2 and other SARS-CoV-2 receptors and related pathways in virally inflamed gut by using the SIV infected rhesus macaque model of HIV/AIDS. Immunohistochemical analysis showed sustained/enhanced ACE2 expression in the gut epithelium of SIV infected animals compared to uninfected controls. Gut mucosal transcriptomic analysis demonstrated enhanced expression of host factors that support SARS-CoV-2 entry, replication, and infection. Metabolomic analysis of gut luminal contents revealed the impact of SIV infection as demonstrated by impaired mitochondrial function and decreased immune response, which render the host more vulnerable to other pathogens. In summary, SIV infection resulted in sustained or increased ACE2 expression in an inflamed and immune-impaired gut mucosal microenvironment. Collectively, these mucosal changes increase the susceptibility to SARS-CoV-2 infection and disease severity and result in ineffective viral clearance. Our study highlights the use of the SIV model of AIDS to fill the knowledge gap of the enteric mechanisms of co-infections as risk factors for poor disease outcomes, generation of new viral variants and immune escape in COVID-19.

4.
J Breath Res ; 16(1)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1545851

ABSTRACT

Exhaled breath condensate (EBC) is routinely collected and analyzed in breath research. Because it contains aerosol droplets, EBC samples from SARS-CoV-2 infected individuals harbor the virus and pose the threat of infectious exposure. We report for the first time a safe and consistent method to fully inactivate SARS-CoV-2 in EBC samples and make EBC samples safe for processing and analysis. EBC samples containing infectious SARS-CoV-2 were treated with several concentrations of acetonitrile. The most commonly used 10% acetonitrile treatment for EBC processing failed to completely inactivate the virus in samples and viable virus was detected by the assay of SARS-CoV-2 infection of Vero E6 cells in a biosafety level 3 laboratory. Treatment with either 50% or 90% acetonitrile was effective to completely inactivate the virus, resulting in safe, non-infectious EBC samples that can be used for metabolomic analysis. Our study provides SARS-CoV-2 inactivation protocol for the collection and processing of EBC samples in the clinical setting and for advancing to metabolic assessments in health and disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Breath Tests , Exhalation , Humans , Metabolomics
5.
PLoS One ; 16(6): e0253578, 2021.
Article in English | MEDLINE | ID: covidwho-1282305

ABSTRACT

RATIONALE: There is little doubt that aerosols play a major role in the transmission of SARS-CoV-2. The significance of the presence and infectivity of this virus on environmental surfaces, especially in a hospital setting, remains less clear. OBJECTIVES: We aimed to analyze surface swabs for SARS-CoV-2 RNA and infectivity, and to determine their suitability for sequence analysis. METHODS: Samples were collected during two waves of COVID-19 at the University of California, Davis Medical Center, in COVID-19 patient serving and staff congregation areas. qRT-PCR positive samples were investigated in Vero cell cultures for cytopathic effects and phylogenetically assessed by whole genome sequencing. MEASUREMENTS AND MAIN RESULTS: Improved cleaning and patient management practices between April and August 2020 were associated with a substantial reduction of SARS-CoV-2 qRT-PCR positivity (from 11% to 2%) in hospital surface samples. Even though we recovered near-complete genome sequences in some, none of the positive samples (11 of 224 total) caused cytopathic effects in cultured cells suggesting this nucleic acid was either not associated with intact virions, or they were present in insufficient numbers for infectivity. Phylogenetic analysis suggested that the SARS-CoV-2 genomes of the positive samples were derived from hospitalized patients. Genomic sequences isolated from qRT-PCR negative samples indicate a superior sensitivity of viral detection by sequencing. CONCLUSIONS: This study confirms the low likelihood that SARS-CoV-2 contamination on hospital surfaces contains infectious virus, disputing the importance of fomites in COVID-19 transmission. Ours is the first report on recovering near-complete SARS-CoV-2 genome sequences directly from environmental surface swabs.


Subject(s)
COVID-19/genetics , Genome, Viral , Hospitals, Teaching , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA , Animals , COVID-19/epidemiology , COVID-19/transmission , Chlorocebus aethiops , Humans , SARS-CoV-2/isolation & purification , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL